23.01.2024

Реферат: Проблемы и перспективы современной энергетики. Энергетическая проблема и пути её решения


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основы современной энергетики

Энергемтика - область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной, энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:

Получение и концентрация энергетических ресурсов, примером может послужить добыча, переработка и обогащение ядерного топлива;

Передача ресурсов к энергетическим установкам, например доставка мазута на тепловую электростанцию;

Преобразование с помощью электростанций первичной энергии во вторичную, например химической энергии угля в электрическую и тепловую энергию;

Передача вторичной энергии потребителям, например по линиям электропередачи.

Современная энергетика. Проблемы и перспективы.

В чем проблемы современной энергетики? Каковы пути и перспективы ее развития? Во времена Советского союза ответ на эти вопросы был бы однозначным и не подлежащим обсуждению: “Догнать, перегнать и оставить далеко позади государство-соперника (например, США, а тем самым и весь мир) по производству и потреблению энергии”. Такой позиции правительство придерживалось и в промышленности, где оно в отличие от гонки вооружений, преуспело, и Союз действительно далеко обогнал США и весь мир в тяжелой промышленности. Теперь мы видим перед собой результат такой политики - Россию, такую, какая она есть сейчас: с бедным народом и разрушенной экономикой. Посмотрим, к чему привели подобные действия в энергетике. Специалисты подсчитали, что в США потребление энергии в 6 раз превосходит среднемировой уровень и в 30 раз - уровень развивающихся стран. Чтобы подтянуться к уровню хотя бы современных Соединенных Штатов, этим странам нужно каждые несколько лет удваивать производство и потребление энергии, тем более что население этих стран стремительно растет, и для их индустриализации, для переселения новых и новых миллиардов латиноамериканцев, африканцев, арабов, индийцев, китайцев, индонезийцев и т.д. из хижин в благоустроенные жилища рост потребности энергии составляет 6-9% в год!

А теперь обратим внимание на информацию, которую предлагают нам ученые:

1. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня Соединенных Штатов, то разведанные запасы нефти истощились бы через 7 лет, природного газа - через 5 лет, угля - через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, - на 660 лет, угля на 350 лет.

2. Предположим, что на нужды энергии можно использовать, как нефть, всю массу нашей планеты. Если скорость увеличения потребления энергии останется такой же, как сегодня, это “горючее” будет сожжено целиком всего за 342 года.

Допустим далее, что мы располагаем запасами горючего, скажем, на миллион лет. Если мы станем увеличивать размеры его потребления всего на 2% в год (а это - приблизительный темп роста мирового народонаселения), то запасов хватит на 501 год.

3. При современных темпах развития техники производство энергии на Земле через 240 лет превысит количество солнечной энергии, падающей на нашу планету, через 800 лет - всю энергию, выделяемую солнцем, а через 1300 лет - полное излучение всей нашей галактики.

Однако, главная проблема современной энергетики - не истощение минеральных ресурсов, а угрожающая экологическая обстановка: еще задолго до того, как будут использованы все мыслимые ресурсы, разразиться экологическая катастрофа, которая превратит Землю в планету, совершенно не приспособленную для жизни человека.

Энергия будущего: Cолнце, воздух и вода - наши лучшие друзья.

Нефть дорожает, и перспектива ее как источника энергии в будущем весьма неопределенна. Пять новых методов добычи энергии - от волновых электростанций, способных отнимать энергию у морских волн, до бактерий, выделяющих электричество из сточных вод, - могут вдохнуть новые силы в наш старый мир.

Представьте себе, что вы месяцами катаетесь на машине, не доливая в бак бензина, обеспечиваете дом энергией океанских волн или подключаете ваш ноутбук к розетке прямо на пиджаке. Впрочем, глядя на ценник на бензоколонке (18 рублей за литр 95-го), можно подумать, что эта энергетическая утопия - совсем уж далекая сказка. С другой стороны, нынешняя мрачная ситуация в энергетике имеет и утешительную сторону. Растущие цены, общая тревога и озабоченность, новая политика правительства - все это, хочешь не хочешь, подталкивает нас к новым усилиям, направленным на обновление всей энергосистемы. Для полномасштабного внедрения некоторых из этих идей потребуются годы и годы. Другие прямо сейчас можно брать на вооружение. Доживем ли мы когда-нибудь до эпохи с бездонными источниками энергии? Строго говоря, вряд ли. Запасы нефти на Земле безусловно ограниченны. Даже водород, которым питается ядерная реакция на Солнце, и тот - увы! - когда-нибудь закончится. До этого страшного мига осталось всего-то миллиардов пять лет. Если не брать в расчет шансов на неожиданный прорыв в технологиях ядерного синтеза, никакой другой источник не обещает в мановение ока решить все наши проблемы. Скорее, энергетические запросы человечества будут удовлетворяться путем объединения различных передовых технологий. В этом союзе сыграют свою роль энергия солнца, ветра, морских волн и другие альтернативные источники. Промышленность как потребитель тоже сделает шаг навстречу - современная технология успешно учится делать больше, потребляя меньше. Очерченные в этой статье пять генеральных идей должны облегчить бремя, которое человечество возлагает на ископаемые виды горючего. Каждая из этих идей подошла вплотную к этапу внедрения, а вместе они должны вымостить дорогу для дальнейших прорывов в производстве и энергосбережении. Не надейтесь, что завтра мы проснемся в новом мире, но сейчас, когда эти проблемы привлекают все более пристальное внимание со стороны ученых, промышленности и потребителей, темпы прогресса растут не по дням, а по часам. В конце концов, смиримся с тем, что запасы всех энергоресурсов ограниченны, зато безграничной остается способность человека порождать новые идеи.

Перспективными считаются реакторы на быстрых нейтронах. Они работают без замедлителя, но требуют несколько иного топлива - произведенного в обычных (тепловых) реакторах плутония. Главное их достоинство с точки зрения энергетики - способность в процессе работы не только производить электроэнергию, но и утилизировать непригодный в качестве ядерного горючего уран-238 для получения новых порций плутония. Фактически появляется возможность организовать так называемый «замкнутый топливный цикл». Впрочем, пока природный уран сравнительно дешев и доступен, эти технологии мало привлекают инвесторов, и за редким исключением реакторы на быстрых нейтронах - это просто реакторы для производства плутония и потенциальные установки для сжигания ядерных отходов. энергия хозяйственный экономический

Человек использует энергию атомного ядра уже 50 лет. Это до сих пор гораздо сложнее, чем топить печку углем или сжигать бензин в двигателе внутреннего сгорания. Начинка ядерных электростанций сделана из того же материала, что и атомная бомба, и все эти годы нас не покидает интуитивное ощущение тревоги и недоверия.

Возможно, еще лет через сто, когда подойдут к концу обычные источники энергии, а возобновляемой замены им так и не найдется, у человечества не будет иного выбора, кроме ядерной энергетики. И будучи реалистом, генеральный директор МАГАТЭ Мохаммед эль Барадеи, выступая в июне 2004 года на конференции в Москве, осторожно сказал так: «сейчас, когда атомная энергетика отмечает свое 50-летие, ее будущее - хоть оно, возможно, и становится многообещающим - все же остается неопределенным».

Размещено на Allbest.ru

...

Подобные документы

    Энергетика как совокупность естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Структура энергетики современной России, ее элементы и значение, перспективы развития.

    презентация , добавлен 07.10.2013

    Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат , добавлен 16.09.2010

    История развития энергетики как науки, общая и вторичная энергетика, понятие "энергия", пути решения энергетических проблем. Электроэнергетика как самостоятельная отрасль. Технологии, используемые в процессе получения, передачи и использования энергии.

    курсовая работа , добавлен 03.02.2012

    Генерация электроэнергии как ее производство посредством преобразования из других видов энергии, с помощью специальных технических устройств. Отличительные признаки, приемы и эффективность промышленной и альтернативной энергетики. Типы электростанций.

    презентация , добавлен 11.11.2013

    Изучение мирового топливно-энергетического баланса, определение потенциальных энергоресурсов Земли. Анализ создания комфортных условий жизнедеятельности человека посредством преобразования разных видов энергии. Обзор основных свойств систем энергетики.

    реферат , добавлен 03.02.2012

    Описания отрасли энергетики, занимающейся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обзор работы атомной электростанции с двухконтурным водо-водяным реактором. Вклад ядерной энергетики Украины в общую выработку.

    реферат , добавлен 28.10.2013

    Проблемы современной российской энергетики, перспективы использование возобновляемых источников энергии и местных видов топлива. Развитие в России рынка биотоплива. Главные преимущества использования биоресурсов на территории Свердловской области.

    контрольная работа , добавлен 01.08.2012

    Характеристика видов и классификации топливно-энергетических ресурсов или совокупности всех природных и преобразованных видов топлива и энергии. Вторичные топливно-энергетические ресурсы - горючие, тепловые и энергоресурсы избыточного давления (напора).

    контрольная работа , добавлен 31.01.2015

    Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат , добавлен 29.03.2011

    Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.

Введение. Энергия - проблемы роста потребления

Энергетический кризис - явление, возникающее, когда спрос на энергоносители значительно выше их предложения. Его причины могут находиться в области логистики, политики или физического дефицита.

Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продол-жительности и улучшения условий его жизни.
История цивилизации - история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.
Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV веку средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, - оно возросло в 30 раз и достигло в 1998 г. 13.7 Гигатонн условного топлива в год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек.
В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.
В то же время энергетика - один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).
Несмотря на отмеченные факторы отрицательного воздействия энергетики на окружающую среду, рост потребления энергии не вызывал особой тревоги у широкой общественности. Так продолжалось до середины 70-х годов, когда в руках специалистов оказались многочисленные данные, свидетельствующие о сильном антропогенном давлении на климатическую систему, что таит угрозу глобальной катастрофы при неконтролируемом росте энергопотребления. С тех пор ни одна другая научная проблема не привлекает такого пристального внимания, как проблема настоящих, а в особенности предстоящих изменений климата.
Считается, что одной из главных причин этого изменения является энергетика. Под энергетикой при этом понимается любая область человеческой деятельности, связанная с производством и потреблением энергии. Значительная часть энергетики обеспечивается потреблением энергии, освобождающейся при сжигании органического ископаемого топлива (нефти, угля и газа), что, в свою очередь, приводит к выбросу в атмосферу огромного количества загрязняющих веществ.
Такой упрощенный подход уже наносит реальный вред мировой экономике и может нанести смертельный удар по экономике тех стран, которые еще не достигли необходимого для завершения индустриальной стадии развития уровня потребления энергии, в том числе России. В действительности все обстоит гораздо сложнее. Помимо парникового эффекта, ответственность за который, частично лежит на энергетике, на климат планеты оказывает влияние ряд естественных причин, к числу важнейших из которых относятся солнечная активность, вулканическая деятельность, параметры орбиты Земли, автоколебания в системе атмосфера-океан. Корректный анализ проблемы возможен лишь с учетом всех факторов, при этом, разумеется, необходимо внести ясность в вопрос, как будет вести себя мировое энергопотребление в ближайшем будущем, действительно ли человечеству следует установить жесткие самоограничения в потреблении энергии с тем, чтобы избежать катастрофы глобального потепления.

Современные тенденции развития энергетики

Общепринятая классификация подразделяет источники первичной энергии на коммерческие и некоммерческие .
Коммерческие источники
энергии включают в себя твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и первичное электричество (электроэнергия, произведенная на ядерных, гидро-, ветровых, геотермальных, солнечных, приливных и волновых станциях).
К некоммерческим относят все остальные источники энергии (дрова, сельскохозяйственные и промышленные отходы, мускульная сила рабочего скота и собственно человека).
Мировая энергетика в целом на протяжении всей индустриальной фазы развития общества основана преимущественно на коммерческих энергоресурсах (около 90% общего потребления энергии). Хотя следует отметить, что существует целая группа стран (экваториальная зона Африки, Юго-Восточная Азия), многочисленное население которых поддерживает свое существование почти исключительно за счет некоммерческих источников энергии.
Различного рода прогнозы потребления энергии, базирующиеся на данных за последние 50-60 лет предполагают, что примерно до 2025 г. ожидается сохранение современного умеренного темпа роста мирового потребления энергии - около 1.5% в год и проявившая себя в последние 20 лет стабилизация мирового душевого потребления на уровне 2.3-2.4 т усл.топл./(чел.-год). После 2030 г. по прогнозу начнется медленное снижение среднемирового уровня душевого потребления энергии к 2100 г. При этом общее потребление энергии обнаруживает явную тенденцию к стабилизации после 2050 г. и даже слабого уменьшения к концу века.
Одним из важнейших факторов, учитывавшихся при разработке прогноза, является обеспеченность ресурсами мировой энергетики, базирующейся на сжигании ископаемого органического топлива.
В рамках рассматриваемого прогноза, безусловно, относящегося к категории умеренных по абсолютным цифрам потребления энергии, исчерпание разведанных извлекаемых запасов нефти и газа наступит не ранее 2050 г., а с учетом дополнительных извлекаемых ресурсов - после 2100 г. Если принять во внимание, что разведанные извлекаемые запасы угля значительно превосходят запасы нефти и газа, вместе взятые, то можно утверждать, что развитие мировой энергетики по данному сценарию обеспечено в ресурсном отношении более чем на столетие.
Вместе с тем, результаты прогнозов дают значительный разброс, что хорошо видно из подборки некоторых опубликованных данных прогнозов на 2000 г.

Таблица 5.7. Некоторые недавние прогнозы энергопотребления на 2000 г.
(в скобках - год публикации) и его действительное значение.

Прогностический центр Потребление первичной энергии,
Гт усл.топл./год
Институт атомной энергии (1987) 21.2
Международный институт прикладного системного анализа (IIASA) (1981) 20.0
Международное агентство по атомной энергии (МАГАТЭ) (1981) 18.7
Окриджская национальная лаборатория (ORNL) (1985) 18.3
Международная комиссия по изменению климата (IPCC) (1992) 15.9
Лаборатория глобальных проблем энергетики ИБРАЭ РАН-МЭИ (1990) 14.5
Действительное энергопотребление 14.3

Уменьшение энергопотребления по отношению к прогнозируемому связаны, прежде всего, с переходом от экстенсивных путей ее развития, от энергетической эйфории к энергетической политике, основанной на повышении эффективности использования энергии и всемерной ее экономии.
Поводом для этих изменений стали энергетические кризисы 1973 и 1979 годов, стабилизация запасов ископаемых топлив и удорожание их добычи, желание уменьшить обусловленную экспортом энергоресурсов зависимость экономики от политической нестабильности в мире.

Вместе с тем, говоря о потреблении энергии, следует отметить, что в постиндустриальном обществе должна быть решена еще одна основополагающая задача - стабилизация численности населения.
Современное общество, не решившее эту проблему или, по крайней мере, не предпринимающее усилий для ее решения, не может считаться ни развитым, ни цивилизованным, поскольку совершенно очевидно, что бесконтрольный рост населения ставит непосредственную угрозу существования человека как биологического вида.
Итак, потребление энергии на душу населения в мире обнаруживает явную тенденцию к стабилизации. Следует отметить, что этот процесс начался еще около 25 лет тому назад, т.е. задолго до нынешних спекуляций на глобальном изменении климата. Такое явление в мирное время наблюдается впервые с начала индустриальной эпохи и связано с массовым переходом стран мира в новую, постиндустриальную стадию развития, в которой потребление энергии на душу населения остается постоянным. Указанный факт имеет весьма важное значение, поскольку в результате и величина общего потребления энергии в мире растет гораздо более медленными темпами. Можно утверждать, что серьезное замедление темпов роста энергопотребления оказалось полной неожиданностью для многих прогнозистов.

Кризис топливных ресурсов

В начале 70-х годов страницы газет запестрели заголовками: «Энергетический кризис!», «Надолго ли хватит органического топлива?», «Конец нефтяного века!», «Энергетический хаос». Этой теме до сих пор большое внимание уделяют все средства массовой информации - печать, радио, телевидение. Основания для такой тревоги есть, ибо человечество вступило в сложный и достаточно долгий период мощного развития своей энергетической базы. Поэтому следуете просто расходовать известные сегодня запасы топлива, но расширяя масштабы современной энергетики, отыскивать новые источники энергии и развивать новые способы её преобразования.
Прогнозов о развитии энергетики сейчас очень много. Тем не менее, несмотря на улучшившуюся методику прогнозирования, специалисты, занимающиеся прогнозами, не застрахованы от просчетов, и не имеют достаточных оснований говорить о большой точности своих прогнозов для такого временного интервала, каким являются 40-50 лет.
Человек всегда будет стремиться обладать как можно большим количеством энергии, обеспечивающим движение вперед. Не всегда наука и техника дадут ему возможность получать энергию во всевозрастающих объемах. Но, как показывает историческое развитие, обязательно будут появляться новые открытия и изобретения, которые помогут человечеству сделать очередной качественный скачок и пойти к новым достижениям ещё более быстрыми шагами.
Тем не менее, пока проблема истощения энергетических ресурсов остается. Ресурсы, которыми обладает Земля, делятся на возобновляемые и невозобновляемые . К первым относятся солнечная энергия, тепло Земли, приливы океанов, леса. Они не прекратят существования, пока будут Солнце и Земля. Невозобновляемые ресурсы не восполняются природой или восполняются очень медленно, гораздо медленнее, чем их расходуют люди. Скорость образования новых горючих ископаемых в недрах Земли определить довольно трудно. В связи с этим оценки специалистов различаются более чем в 50 раз. Если даже принять самое большое это число, то все равно скорость накопления топлива в недрах Земли в тысячу раз меньше скорости его потребления. Поэтому такие ресурсы и называют невозобновляемыми. Оценка запасов и потребления основных из них приведена в табл.5.44. В таблице приведены потенциальные ресурсы. Поэтому при существующих сегодня методах добычи из них можно извлечь только около половины. Другая половина остается в недрах. Именно поэтому, часто утверждают, что запасов хватит на 120-160 лет. Большую тревогу вызывает намечающееся истощение нефти и газа, которого (по имеющимся оценкам) может хватить всего на 40-60 лет.
С углем свои проблемы. Во-первых, его транспортировка - дело весьма трудоемкое. Так в России, основные запасы угля сосредоточены на востоке, а основное потребление - в европейской части. Во-вторых, широкое использование угля связано с серьезным загрязнением атмосферы, засорением поверхности земли и ухудшением почвы.
В разных странах все перечисленные проблемы выглядят различно, но решение их почти везде было одно - внедрение атомной энергетики. Запасы уранового сырья тоже ограничены. Однако если говорить о современных тепловых реакторах усовершенствованного типа, то для них, вследствие достаточно большой их эффективности, можно считать запасы урана практически безграничными.
Так почему же люди заговорили об энергетическом кризисе, если запасов только органического топлива хватит на сотни лет, а в резерве ещё ядерное?
Весь вопрос в том, сколько оно стоит. И именно с этой стороны нужно рассматривать сейчас энергетическую проблему. в недрах земли ещё много, но их добыча Нефти, газа стоит все дороже и дороже, так как эту энергию приходится добывать из более бедных и глубоко залегающих пластов, из небогатых месторождений, открытых в необжитых, труднодоступных районах. Гораздо больше приходится и придется вкладывать средств для того, чтобы свести к минимуму экологические последствия использования органического топлива.
Атомная энергия внедряется сейчас не потому, что она обеспечена топливом на столетия и тысячелетия, а, скорее из-за экономии и сохранения на будущее нефти и газа, а также из-за возможности уменьшения экологической нагрузки на биосферу.
Существует распространенное мнение, что стоимость электроэнергии АЭС значительно ниже стоимости энергии, вырабатываемой на угольных, а в перспективе - и газовых электростанциях. Но если подробно рассмотреть весь цикл атомной энергетики (от добычи сырья до утилизации РАО, включая расходы на строительство самой АЭС), то эксплуатация АЭС и обеспечение ее безопасной работы оказываются дороже, чем строительство и работа станции такой же мощности на традиционных источниках энергии (табл.5.8 на примере экономики США).
Поэтому в последнее время все больший акцент делается на энергосберегающих технологиях и возобновляемых источниках - таких как солнце, ветер, водная стихия. Например, в Европейском союзе поставлена цель к 2010-2012 гг. получать 22% электроэнергии с помощью новых источников. В Германии, например, уже в 2001 г. энергия, производимая от возобновимых источников, была равносильна работе 8 атомных реакторов, или 3.5% всей электроэнергии.
Многие считают, что будущее принадлежит дарам Солнца. Однако, оказывается и здесь все не так просто. Пока стоимость получения электроэнергии с применением современных солнечных фотоэлектрических элементов в 100 раз выше, чем на обычных электростанциях. Однако специалисты, занимающиеся фотоэлементами, полны оптимизма, и считают, что им удастся существенно снизить их стоимость.
Точки зрения специалистов на перспективы использования возобновляемых источников энергии очень различаются. Комитет по науке и технике в Англии, проанализировав перспективы освоения таких источников энергии, пришел к выводу, что их использование на базе современных технологий пока минимум в два-четыре раза дороже строительства АЭС. Другие специалисты в различных прогнозах этим источникам энергии уже в недалеком будущем. По-видимому, источники возобновляемой энергии будут применяться в отдельных районах мира, благоприятных для их эффективного и экономичного использования, но в крайне ограниченных масштабах. Основную долю энергетических потребностей человечества должны обеспечить уголь и атомная энергетика. Правда, пока нет настолько дешевого источника, который позволил бы развивать энергетику такими быстрыми темпами, как бы этого хотелось.
Сейчас и на предстоящие десятилетия наиболее экологичным источником энергии представляются ядерные, а затем, возможно, и термоядерные редакторы. С их помощью человек и будет двигаться по ступеням технического прогресса. Будет двигаться до тех пор, пока не откроет и не освоит какой-либо другой, более удобный источник энергии.
На рис.5.38 приведен график роста мощности АЭС в мире и производства электроэнергии за 1971-2006 гг., и прогнозы развития на 2020-30 гг. Помимо упомянутых выше, несколько развивающихся стран, таких, как Индонезия, Египет, Иордания и Вьетнам, заявили о возможности создания АЭС и сделали первые шаги в этом направлении.



Рис.5.38. (наверху ) Рост мощности АЭС и производства электроэнергии за 1971-2006 гг. по данным МАГАТЭ и прогнозы мощности АЭС в Мире на 2020-2030 гг. (внизу )

Экологический кризис энергетики

Основные формы влияния энергетики на окружающую среду состоят в следующем.

  1. Основной объем энергии человечество пока получает за счет использования невозобновимых ресурсов.
  2. Загрязнение атмосферы: тепловой эффект, выделение в атмосферу газов и пыли.
  3. 3. Загрязнение гидросферы: тепловое загрязнение водоемов, выбросы загрязняющих веществ.
  4. Загрязнение литосферы при транспортировке энергоносителей и захоронении отходов, при производстве энергии.
  5. Загрязнение радиоактивными и токсичными отходами окружающей среды.
  6. Изменение гидрологического режима рек гидроэлектростанциями и как следствие загрязнение на территории водотока.
  7. Создание электромагнитных полей вокруг линий электропередач.

Согласовать постоянный рост энергопотребления с ростом отрицательных последствий энергетики, учитывая, что в ближайшее время человечество ощутит ограниченность ископаемого топлива, можно, по-видимому, двумя способами

  1. Экономия энергии. Степень влияния прогресса на экономию энергии можно продемонстрировать на примере паровых машин. Как известно, КПД паровых машин 100 лет назад составлял 3-5%, а сейчас достигает 40%. Развитие мировой экономики после энергетического кризиса 70 годов также показало, что на этом пути у человечества есть значительные резервы. Применение ресурсосберегающих и энергосберегающих технологий обеспечило значительное сокращение потребления топлива и материалов в развитых странах.
  2. Развитие экологически более чистых видов производства энергии. Решить проблему, вероятно, способно развитие альтернативных видов энергетики, особенно базирующихся на использовании возобновляемых источников. Однако пути реализации данного направления пока не очевидны. Пока возобновимые источники дают не более 20 % общемирового потребления энергии. Основной вклад в эти 20% дают использование биомассы и гидроэнергетика.

Экологические проблемы традиционной энергетики

Основная часть электроэнергии производится в настоящее время на тепловых электростанциях (ТЭС). Далее обычно идут гидроэлектростанции (ГЭС) и атомные электростанции (АЭС).

Проблемы и перспективы современной энергетики
Специалисты подсчитали, что в США потребление энергии в 6 раз превосходит среднемировой уровень и в 30 раз - уровень развивающихся стран.

Ученые предлагают следующую информацию к размышлению. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня Соединенных Штатов, то разведанные запасы нефти истощились бы через 7 лет, природного газа - через 5 лет, угля - через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах - на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, - на 660 лет. Угля - на 350 лет.
Предположим, что на нужды энергии можно использовать, как нефть, всю массу нашей планеты. Если скорость увеличения потребления энергии останется такой же, как сегодня, это “горючее” будет сожжено целиком всего за 342 года.
При современных темпах развития техники производство энергии на Земле через 240 лет превысит количество солнечной энергии, падающей на нашу планету, через 800 лет - всю энергию, выделяемую солнцем, а через 1300 лет превзойдет полное излучение всей нашей Галактики.
Однако главная проблема современной энергетики - не истощение минеральных ресурсов, а угрожающая экологическая обстановка.

Атомная энергетика
Исходя из опыта, человечеству придется отказаться от атомной энергетики по 4 причинам.
Во-первых, каждая атомная электростанция независимо от степени ее надежности является стационарной атомной бомбой, которая в любой момент может быть взорвана путем диверсии, бомбардировкой с воздуха, обстрелом ракетами или обычными артиллерийскими снарядами.
Во-вторых, на примере Чернобыля мы на собственном опыте убедились, что авария на атомной электростанции может произойти по чьей-то небрежности. С 1971 по 1984 гг. на АЭС мира произошла 151 серьезная авария, при которой случился “значительный выброс радиоактивных материалов с опасным воздействием на людей”. С тех пор года не проходило, чтобы в той или иной стране мира не происходило серьезной аварии на АЭС, а иногда - и по несколько аварий.
Втретьих, реальной опасностью являются радиоактивные отходы атомных электростанций, которых за прошедшие десятилетия накопилось довольно много, и накопится еще больше, если атомная энергетика займет доминирующее положение в мировом энергобалансе. Сейчас отходы атомного производства в специальных контейнерах зарывают глубоко в землю или опускают на дно океана. Эти способы не являются безопасными: с течением времени защитные оболочки разрушаются, и радиоактивные элементы попадают в воду и почву, а потом - и в организм человека.
Вчетвертых, атомное горючее может быть с одинаковой эффективностью использовано и в АЭС, и в атомной бомбе. Совет безопасности ООН пресекает попытки развивающихся тоталитарных государств ввозить атомное горючее якобы для развития атомной энергетики. Это закрывает атомной энергетике дорогу в будущее в качестве доминирующей части мирового энергобаланса.
Но атомная энергетика имеет и немаловажные достоинства. Американские специалисты подсчитали, что, если бы к началу 90-х годов в СССР все атомные электростанции заменили на угольные той же мощности, то загрязнение воздуха стало бы настолько велико, что это привело бы к 50-кратному увеличению преждевременных смертей в XXI в. в сравнении с самыми пессимистичными прогнозами последствий чернобыльской катастрофы.

Альтернативная энергетика. Теория и практика
Альтернативная энергетика основана на использовании возобновляемых (или "чистых") источников энергии. К таковым относятся энергогенерирующие устройства, работающие с использованием энергии Солнца, ветра, приливов и отливов, морских волн, а также подземного тепла планеты.

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце. В настоящее время используется лишь малая часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Специалисты утверждают, что гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Но перед ней встает множество проблем, связанных с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным.

Энергия ветра
По оценке Всемирной метеорологической организации, потенциал энергии ветра в мире составляет 170 трлн кВтч в год.
У энергии ветра есть несколько существенных недостатков, которые затрудняют ее использование. Прежде всего, она сильно рассеяна в пространстве, поэтому необходимо строить ветроэнергоустановки, способные постоянно работать с высоким КПД.
Ветер очень непредсказуем: часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но у энергии ветра есть главное преимущество - экологическая чистота. К тому же, недостатки можно уменьшить, а то и вовсе свести на нет.
Разработаны ветроэнергоустановки, способные эффективно работать при самом слабом ветерке. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть также автоматически переводится во флюгерное положение, так что авария исключается.
Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей, и обычных ветряков.
Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки там стоят рядами на обширном пространстве и занимают много места. В Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где и она никому не мешает, и ветер устойчивее, чем на суше.
Положительный пример использования энергии ветра показали Нидерланды и Швеция (последняя приняла решение на протяжении 90-х гг. построить и разместить в наиболее удобных местах 54 тыс. высокоэффективных энергоустановок).
В мире сейчас работает более 30 тыс. ВЭУ разной мощности. Германия получает от ветра 10% своего электричества, а всей Западной Европе ветер дает 2500 МВт электроэнергии.

Гидроэнергия
Гидроэнергостанции - еще один из источников энергии, претендующих на экологическую чистоту. В начале XX века крупные и горные реки мира привлекли к себе внимание, а к концу столетия большинство из них было перегорожено каскадами плотин, дающими дешевую энергию.
Однако это привело к огромному ущербу для сельского хозяйства и природы: земли выше плотин подтоплялись, на территориях, расположенных ниже, падал уровень грунтовых вод, терялись огромные пространства земли, уходившие на дно гигантских водохранилищ, прерывалось естественное течение рек, загнивала вода в водохранилищах, уменьшались рыбные запасы. На горных реках все эти минусы сводились к минимуму, зато добавлялся еще один: в случае землетрясения, способного разрушить плотину, катастрофа могла привести к тысячам человеческих жертв. Поэтому современные крупные ГЭС не являются действительно экологически чистыми. Однако минусы ГЭС породили идею мини-ГЭС, которые могут располагаться на небольших реках или даже ручьях, а их электрогенераторы способны работать при небольших перепадах воды или будучи движимыми лишь силой течения. Эти же мини-ГЭС могут быть установлены и на крупных реках с относительно быстрым течением.
Детально разработаны центробежные и пропеллерные энергоблоки рукавных переносных гидроэлектростанций мощностью от 0,18 до 30 кВт. При поточном производстве унифицированного гидротурбинного оборудования мини-ГЭС способны конкурировать с максивариантами по себестоимости одного киловаттчаса. Также несомненным плюсом является возможность их установки даже в самых труднодоступных уголках той или иной страны: все оборудование можно перевезти на одной вьючной лошади, а установка или демонтаж занимает всего несколько часов.
Еще одной очень перспективной разработкой, не получившей пока широкого применения, является недавно созданная геликоидная турбина Горлова, названная по имени ее создателя. Ее особенность заключается в том, что она не нуждается в сильном напоре и эффективно работает, используя кинетическую энергию водяного потока - реки, океанского течения или морского прилива. Это изобретение изменило привычное представление о гидроэнергостанции, мощность которой ранее зависела только от силы напора воды, то есть от высоты плотины ГЭС.

Энергия приливов и отливов
Несоизмеримо более мощным источником водных потоков являются приливы и отливы. Проекты приливных гидроэлектростанций детально разработаны в инженерном отношении, экспериментально опробованы в нескольких странах, в том числе на Кольском полуострове в России. Продумана даже стратегия оптимальной эксплуатации ПЭС: накапливать воду в водохранилище за плотиной во время приливов и расходовать ее на производство электроэнергии, когда наступает “пик потребления” в единых энергосистемах, ослабляя тем самым нагрузку на другие электростанции.
Сегодня ПЭС неконкурентоспособны по сравнению с тепловой энергетикой.
Практически на сооружение ПЭС в наиболее благоприятных для этого точках морского побережья, где перепад уровней воды колеблется от 1-2 до 10-16 метров, потребуются десятилетия или даже столетия. Но проценты в мировой энергобаланс ПЭС должны начать давать уже на протяжении XXI века.
Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в пролив ЛаМанш, где средняя амплитуда приливов составляет 8,4 м. Открывая станцию, президент Франции Шарль де Голль назвал ее выдающимся сооружением века. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение речной ГЭС такой же мощности, первый опыт экплуатации приливной ГЭС оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и эффективно используется.
Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м.
Планируется использовать также огромный энергетический потенциал Охотского моря, где местами, например, в Пенжинской губе, высота приливов достигает 12,9 м, а в Гижигинской губе - 12-14 м. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на строительство.

Энергия волн
Уже сегодня инженерно разработаны и экспериментально опробованы высокоэкономичные волновые энергоустановки, способные эффективно работать даже при слабом волнении или вообще при полном штиле. На дно моря или озера устанавливается вертикальная труба, в подводной части которой сделано “окно”, попадая в которое, глубинная волна (а это почти постоянное явление) сжимает воздух в шахте, а тот крутит турбину генератора. При обратном движении воздух в турбине разрежается, приводя в движение вторую турбину. Таким образом, волновая электростанция работает беспрерывно почти при любой погоде, а ток по подводному кабелю передается на берег. Некоторые типы ВЭС могут служить отличными волнорезами, защищая побережье от волн и позволяя таким образом экономить на сооружении бетонных волнорезов.
Специалистами лаборатории энергетики воды и ветра Северо-Восточного университета в Бостоне (США) разработан проект первой в мире океанской электростанции. Она будет сооружена во Флоридском проливе, где берет начало Гольфстрим. На его выходе из Мексиканского залива мощность водяного потока составляет 25 млн м 3/сек., что в 20 раз превышает суммарный расход воды во всех реках земного шара. По подсчетам специалистов, средства, вложенные в проект, окупятся в течение пяти лет. В этой уникальной электростанции для получения тока мощностью 38 кВт будет использоваться турбина Горлова. Эта геликоидная турбина имеет три спиральные лопасти и под действием потока воды вращается в 2-3 раза быстрее скорости течения. В отличие от многотонных металлических турбин, применяемых на речных гидроэлектростанциях, размеры изготовленной из пластика турбины Горлова невелики (диаметр - 50 см, длина - 84 см), масса ее всего 35 кг. Эластичное покрытие поверхности лопастей уменьшает трение о воду и исключает налипание морских водорослей и моллюсков. Коэффициент полезного действия турбины Горлова в три раза выше, чем у обычных турбин.

Геотермальная энергия
Подземное тепло планеты - довольно хорошо известный и уже применяемый источник “чистой” энергии. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г. на юге Камчатки, в долине реки Паужетки. В 1980 г. ее мощность составляла уже 11 МВт. В Италии, в районах Ландерелло, Монте-Амиата и Травеле, работают 11 таких станций общей мощностью 384 МВт. ГеоТЭС действуют также в США (Калифорния, Долина Больших Гейзеров), Исландии (у озера Миватн), Новой Зеландии, Мексике и Японии. Столица Исландии Рейкьявик получает тепло исключительно от горячих подземных источников.
Геологи открыли, что раскаленные до 180°-200°С массивы на глубине 46 км занимают большую часть территории России, а с температурой до 100°-150°С встречаются почти повсеместно. Кроме того, на нескольких миллионах квадратных километров располагаются горячие подземные реки и моря с глубиной залегания до 3,5 км и температурой воды до 200°С (естественно, под давлением), так что, пробурив скважину, можно без всякой ТЭЦ получить фонтан пара и горячей воды.

Гидротермальная энергия
Кроме подземного, существует и водное тепло, не так распространенное в качестве источника энергии. Вода - это всегда хотя бы несколько градусов тепла, а летом она нагревается до 25°С. Для использования этого тепла необходима установка, действующая по принципу “холодильник наоборот”. Если пропускать воду через холодильный аппарат, то у нее тоже можно отбирать тепло. Горячий пар, который образуется в результате теплообмена, конденсируется, его температура поднимается до 110°С, а затем его можно направлять либо на турбины электростанций, либо на нагревание воды в батареях центрального отопления до 60°-65°С. В ответ на каждый киловаттчас затрачиваемой на это энергии природа возвращает 3 киловаттчаса. По тому же принципу можно получать энергию для кондиционирования воздуха при жаркой погоде.
Наиболее эффективны такие установки при больших перепадах температур. Все необходимые инженерные разработки уже проведены и опробованы экспериментально.

Энергетика сегодня и завтра
Сегодня около половины мирового энергобаланса приходится на долю нефти, около трети - на долю газа и атома (примерно по одной шестой) и около одной пятой - на долю угля. На все остальные источники энергии остается всего несколько процентов. Но там, где есть возможность, следует внедрять альтернативные источники энергии.
Следует отметить (и об этом неоднократно сообщала СиН), что, например, определенный опыт использования энергии ветра уже есть и в Беларуси.

Проблемы и перспективы современной энергетики
Специалисты подсчитали, что в США потребление энергии в 6 раз превосходит среднемировой уровень и в 30 раз - уровень развивающихся стран.

Ученые предлагают следующую информацию к размышлению. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня Соединенных Штатов, то разведанные запасы нефти истощились бы через 7 лет, природного газа - через 5 лет, угля - через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах - на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, - на 660 лет. Угля - на 350 лет.
Предположим, что на нужды энергии можно использовать, как нефть, всю массу нашей планеты. Если скорость увеличения потребления энергии останется такой же, как сегодня, это “горючее” будет сожжено целиком всего за 342 года.
При современных темпах развития техники производство энергии на Земле через 240 лет превысит количество солнечной энергии, падающей на нашу планету, через 800 лет - всю энергию, выделяемую солнцем, а через 1300 лет превзойдет полное излучение всей нашей Галактики.
Однако главная проблема современной энергетики - не истощение минеральных ресурсов, а угрожающая экологическая обстановка.

Атомная энергетика
Исходя из опыта, человечеству придется отказаться от атомной энергетики по 4 причинам.
Во-первых, каждая атомная электростанция независимо от степени ее надежности является стационарной атомной бомбой, которая в любой момент может быть взорвана путем диверсии, бомбардировкой с воздуха, обстрелом ракетами или обычными артиллерийскими снарядами.
Во-вторых, на примере Чернобыля мы на собственном опыте убедились, что авария на атомной электростанции может произойти по чьей-то небрежности. С 1971 по 1984 гг. на АЭС мира произошла 151 серьезная авария, при которой случился “значительный выброс радиоактивных материалов с опасным воздействием на людей”. С тех пор года не проходило, чтобы в той или иной стране мира не происходило серьезной аварии на АЭС, а иногда - и по несколько аварий.
Втретьих, реальной опасностью являются радиоактивные отходы атомных электростанций, которых за прошедшие десятилетия накопилось довольно много, и накопится еще больше, если атомная энергетика займет доминирующее положение в мировом энергобалансе. Сейчас отходы атомного производства в специальных контейнерах зарывают глубоко в землю или опускают на дно океана. Эти способы не являются безопасными: с течением времени защитные оболочки разрушаются, и радиоактивные элементы попадают в воду и почву, а потом - и в организм человека.
Вчетвертых, атомное горючее может быть с одинаковой эффективностью использовано и в АЭС, и в атомной бомбе. Совет безопасности ООН пресекает попытки развивающихся тоталитарных государств ввозить атомное горючее якобы для развития атомной энергетики. Это закрывает атомной энергетике дорогу в будущее в качестве доминирующей части мирового энергобаланса.
Но атомная энергетика имеет и немаловажные достоинства. Американские специалисты подсчитали, что, если бы к началу 90-х годов в СССР все атомные электростанции заменили на угольные той же мощности, то загрязнение воздуха стало бы настолько велико, что это привело бы к 50-кратному увеличению преждевременных смертей в XXI в. в сравнении с самыми пессимистичными прогнозами последствий чернобыльской катастрофы.

Альтернативная энергетика. Теория и практика
Альтернативная энергетика основана на использовании возобновляемых (или "чистых") источников энергии. К таковым относятся энергогенерирующие устройства, работающие с использованием энергии Солнца, ветра, приливов и отливов, морских волн, а также подземного тепла планеты.

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце. В настоящее время используется лишь малая часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Специалисты утверждают, что гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Но перед ней встает множество проблем, связанных с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным.

Энергия ветра
По оценке Всемирной метеорологической организации, потенциал энергии ветра в мире составляет 170 трлн кВтч в год.
У энергии ветра есть несколько существенных недостатков, которые затрудняют ее использование. Прежде всего, она сильно рассеяна в пространстве, поэтому необходимо строить ветроэнергоустановки, способные постоянно работать с высоким КПД.
Ветер очень непредсказуем: часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но у энергии ветра есть главное преимущество - экологическая чистота. К тому же, недостатки можно уменьшить, а то и вовсе свести на нет.
Разработаны ветроэнергоустановки, способные эффективно работать при самом слабом ветерке. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть также автоматически переводится во флюгерное положение, так что авария исключается.
Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей, и обычных ветряков.
Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки там стоят рядами на обширном пространстве и занимают много места. В Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где и она никому не мешает, и ветер устойчивее, чем на суше.
Положительный пример использования энергии ветра показали Нидерланды и Швеция (последняя приняла решение на протяжении 90-х гг. построить и разместить в наиболее удобных местах 54 тыс. высокоэффективных энергоустановок).
В мире сейчас работает более 30 тыс. ВЭУ разной мощности. Германия получает от ветра 10% своего электричества, а всей Западной Европе ветер дает 2500 МВт электроэнергии.

Гидроэнергия
Гидроэнергостанции - еще один из источников энергии, претендующих на экологическую чистоту. В начале XX века крупные и горные реки мира привлекли к себе внимание, а к концу столетия большинство из них было перегорожено каскадами плотин, дающими дешевую энергию.
Однако это привело к огромному ущербу для сельского хозяйства и природы: земли выше плотин подтоплялись, на территориях, расположенных ниже, падал уровень грунтовых вод, терялись огромные пространства земли, уходившие на дно гигантских водохранилищ, прерывалось естественное течение рек, загнивала вода в водохранилищах, уменьшались рыбные запасы. На горных реках все эти минусы сводились к минимуму, зато добавлялся еще один: в случае землетрясения, способного разрушить плотину, катастрофа могла привести к тысячам человеческих жертв. Поэтому современные крупные ГЭС не являются действительно экологически чистыми. Однако минусы ГЭС породили идею мини-ГЭС, которые могут располагаться на небольших реках или даже ручьях, а их электрогенераторы способны работать при небольших перепадах воды или будучи движимыми лишь силой течения. Эти же мини-ГЭС могут быть установлены и на крупных реках с относительно быстрым течением.
Детально разработаны центробежные и пропеллерные энергоблоки рукавных переносных гидроэлектростанций мощностью от 0,18 до 30 кВт. При поточном производстве унифицированного гидротурбинного оборудования мини-ГЭС способны конкурировать с максивариантами по себестоимости одного киловаттчаса. Также несомненным плюсом является возможность их установки даже в самых труднодоступных уголках той или иной страны: все оборудование можно перевезти на одной вьючной лошади, а установка или демонтаж занимает всего несколько часов.
Еще одной очень перспективной разработкой, не получившей пока широкого применения, является недавно созданная геликоидная турбина Горлова, названная по имени ее создателя. Ее особенность заключается в том, что она не нуждается в сильном напоре и эффективно работает, используя кинетическую энергию водяного потока - реки, океанского течения или морского прилива. Это изобретение изменило привычное представление о гидроэнергостанции, мощность которой ранее зависела только от силы напора воды, то есть от высоты плотины ГЭС.

Энергия приливов и отливов
Несоизмеримо более мощным источником водных потоков являются приливы и отливы. Проекты приливных гидроэлектростанций детально разработаны в инженерном отношении, экспериментально опробованы в нескольких странах, в том числе на Кольском полуострове в России. Продумана даже стратегия оптимальной эксплуатации ПЭС: накапливать воду в водохранилище за плотиной во время приливов и расходовать ее на производство электроэнергии, когда наступает “пик потребления” в единых энергосистемах, ослабляя тем самым нагрузку на другие электростанции.
Сегодня ПЭС неконкурентоспособны по сравнению с тепловой энергетикой.
Практически на сооружение ПЭС в наиболее благоприятных для этого точках морского побережья, где перепад уровней воды колеблется от 1-2 до 10-16 метров, потребуются десятилетия или даже столетия. Но проценты в мировой энергобаланс ПЭС должны начать давать уже на протяжении XXI века.
Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в пролив ЛаМанш, где средняя амплитуда приливов составляет 8,4 м. Открывая станцию, президент Франции Шарль де Голль назвал ее выдающимся сооружением века. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение речной ГЭС такой же мощности, первый опыт экплуатации приливной ГЭС оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и эффективно используется.
Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м.
Планируется использовать также огромный энергетический потенциал Охотского моря, где местами, например, в Пенжинской губе, высота приливов достигает 12,9 м, а в Гижигинской губе - 12-14 м. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на строительство.

Энергия волн
Уже сегодня инженерно разработаны и экспериментально опробованы высокоэкономичные волновые энергоустановки, способные эффективно работать даже при слабом волнении или вообще при полном штиле. На дно моря или озера устанавливается вертикальная труба, в подводной части которой сделано “окно”, попадая в которое, глубинная волна (а это почти постоянное явление) сжимает воздух в шахте, а тот крутит турбину генератора. При обратном движении воздух в турбине разрежается, приводя в движение вторую турбину. Таким образом, волновая электростанция работает беспрерывно почти при любой погоде, а ток по подводному кабелю передается на берег. Некоторые типы ВЭС могут служить отличными волнорезами, защищая побережье от волн и позволяя таким образом экономить на сооружении бетонных волнорезов.
Специалистами лаборатории энергетики воды и ветра Северо-Восточного университета в Бостоне (США) разработан проект первой в мире океанской электростанции. Она будет сооружена во Флоридском проливе, где берет начало Гольфстрим. На его выходе из Мексиканского залива мощность водяного потока составляет 25 млн м 3/сек., что в 20 раз превышает суммарный расход воды во всех реках земного шара. По подсчетам специалистов, средства, вложенные в проект, окупятся в течение пяти лет. В этой уникальной электростанции для получения тока мощностью 38 кВт будет использоваться турбина Горлова. Эта геликоидная турбина имеет три спиральные лопасти и под действием потока воды вращается в 2-3 раза быстрее скорости течения. В отличие от многотонных металлических турбин, применяемых на речных гидроэлектростанциях, размеры изготовленной из пластика турбины Горлова невелики (диаметр - 50 см, длина - 84 см), масса ее всего 35 кг. Эластичное покрытие поверхности лопастей уменьшает трение о воду и исключает налипание морских водорослей и моллюсков. Коэффициент полезного действия турбины Горлова в три раза выше, чем у обычных турбин.

Геотермальная энергия
Подземное тепло планеты - довольно хорошо известный и уже применяемый источник “чистой” энергии. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г. на юге Камчатки, в долине реки Паужетки. В 1980 г. ее мощность составляла уже 11 МВт. В Италии, в районах Ландерелло, Монте-Амиата и Травеле, работают 11 таких станций общей мощностью 384 МВт. ГеоТЭС действуют также в США (Калифорния, Долина Больших Гейзеров), Исландии (у озера Миватн), Новой Зеландии, Мексике и Японии. Столица Исландии Рейкьявик получает тепло исключительно от горячих подземных источников.
Геологи открыли, что раскаленные до 180°-200°С массивы на глубине 46 км занимают большую часть территории России, а с температурой до 100°-150°С встречаются почти повсеместно. Кроме того, на нескольких миллионах квадратных километров располагаются горячие подземные реки и моря с глубиной залегания до 3,5 км и температурой воды до 200°С (естественно, под давлением), так что, пробурив скважину, можно без всякой ТЭЦ получить фонтан пара и горячей воды.

Гидротермальная энергия
Кроме подземного, существует и водное тепло, не так распространенное в качестве источника энергии. Вода - это всегда хотя бы несколько градусов тепла, а летом она нагревается до 25°С. Для использования этого тепла необходима установка, действующая по принципу “холодильник наоборот”. Если пропускать воду через холодильный аппарат, то у нее тоже можно отбирать тепло. Горячий пар, который образуется в результате теплообмена, конденсируется, его температура поднимается до 110°С, а затем его можно направлять либо на турбины электростанций, либо на нагревание воды в батареях центрального отопления до 60°-65°С. В ответ на каждый киловаттчас затрачиваемой на это энергии природа возвращает 3 киловаттчаса. По тому же принципу можно получать энергию для кондиционирования воздуха при жаркой погоде.
Наиболее эффективны такие установки при больших перепадах температур. Все необходимые инженерные разработки уже проведены и опробованы экспериментально.

Энергетика сегодня и завтра
Сегодня около половины мирового энергобаланса приходится на долю нефти, около трети - на долю газа и атома (примерно по одной шестой) и около одной пятой - на долю угля. На все остальные источники энергии остается всего несколько процентов. Но там, где есть возможность, следует внедрять альтернативные источники энергии.
Следует отметить (и об этом неоднократно сообщала СиН), что, например, определенный опыт использования энергии ветра уже есть и в Беларуси.

Энергетическая проблема - одна из важнейших проблем, которые сегодня приходится решать человечеству. Уже стали привычными такие достижения науки и техники, как средства мгновенной связи, быстрый транспорт, освоение космического пространства. Но все это требует огромных затрат энергии. Резкий рост производства и потребления энергии выдвинул новую острую проблему загрязнения окружающей среды, которое представляет серьезную опасность для человечества.

Мировые энергетические потребности в ближайшее десятилетия будут интенсивно возрастать. Какой-либо один источник энергии не сможет их обеспечить, поэтому необходимо развивать все источники энергии и эффективно использовать энергетические ресурсы.

На ближайшем этапе развития энергетики (первые десятилетия XXI в.) наиболее перспективными останутся угольная энергетика и ядерная энергетика с реакторами на тепловых и быстрых нейтронах. Однако можно надеяться, что человечество не остановится на пути прогресса, связанного с потреблением энергии во всевозрастающих количествах.

Слово «энергия» с греческого означает действие, деятельность. Важность понятия энергии определяется тем, что она подчиняется закону сохранения. Представление об энергии помогает понять невозможность создания вечного двигателя. Работа может совершаться только в результате определенных изменений окружающих тел или систем (горения топлива, падения воды). Способность тела при переходе его из одного состояния в другое совершать определенную работу (работоспособность) и была названа энергией. Сейчас как никогда остро встал вопрос: что ждет человечество - энергетический голод или энергетическое изобилие. Не сходят со страниц газет и журналов статьи об энергетическом кризисе. Неумолимые законы природы утверждают, что получить энергию, пригодную для использования, можно только за счет ее преобразования из других форм. Вечные двигатели к сожалению невозможны. А сегодня 4 из 5 произведенных киловатт электроэнергии получаются при сжигании топлива или использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых станциях. Возросшие цены на нефть, быстрое развитие атомной энергетики, возрастание требований к защите окружающей среды потребовали нового подхода к энергетике.

Не зря говорят: «Энергетика - хлеб промышленности». Чем более развиты промышленность и техника, тем больше энергии нужно для них. Существует даже специальное понятие - «опережающее развитие энергетики». Это значит, что ни одно промышленное предприятие, ни один новый город или просто дом нельзя построить до того, как будет определен или создан заново источник энергии,

которую они станут потреблять. Вот почему по количеству добываемой и используемой энергии довольно точно можно судить о технической и экономической мощи, а проще говоря - о богатстве любого государства.

В природе запасы энергии огромны. Ее несут солнечные лучи, ветры и движущиеся массы воды, она хранится в древесине, залежах газа, нефти, каменного угля. Практически безгранична энергия, «запечатанная» в ядрах атомов вещества. Но не все ее формы пригодны для прямого использования.

За долгую историю энергетики накопилось много технических средств и способов добывания энергии и преобразования ее в нужные людям формы. Собственно, и человек-то стал человеком только тогда, когда научился получать и использовать тепловую энергию. Огонь костров зажгли первые люди, еще не понимавшие его природы, однако этот способ преобразования химической

энергии в тепловую сохраняется и совершенствуется уже на протяжении тысячелетий.

К энергии собственных мускулов и огня люди добавили мускульную энергию животных. Они изобрели технику для удаления химически связанной воды из глины с помощью тепловой энергии огня - гончарные печи, в которых получали прочные керамические изделия. Конечно, процессы, происходящие при этом, человек познал только тысячелетия спустя.

Потом люди придумали мельницы - технику для преобразования энергии ветряных потоков и ветра в механическую энергии вращающегося вала. Но только с изобретением паровой машины, двигателя внутреннего сгорания, гидравлической, паровой и газовой турбин, электрических генератора и двигателя, человечество получило в свое распоряжение достаточно мощные

технические устройства. Они способны преобразовать природную энергию в иные ее виды, удобные для применения и получения больших количеств работы. Поиск новых источников энергии на этом не завершился: были изобретены аккумуляторы, топливные элементы, преобразователи солнечной энергии в электрическую и - уже в середине ХХ столетия - атомные реакторы.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей более чем шестимиллиардного населения Земли становится сейчас все более насущной.

Основу современной мировой энергетики составляют тепло- и гидроэлектростанции. Однако их развитие сдерживается рядом факторов. Стоимость угля, нефти и газа, на которых работают тепловые станции, растет, а природные ресурсы этих видов топлива сокращаются. К тому же многие страны не располагают собственными топливными ресурсами или испытывают в них недостаток. В процессе производства электроэнергии на ТЭС происходит выброс вредных веществ в атмосферу. Причем если топливом служит уголь, особенно бурый, малоценный для другого вида использования и с большим содержанием ненужных примесей, выбросы достигают колоссальных размеров. И, наконец, аварии на ТЭС наносят большой ущерб природе, сопоставимый с вредом любого крупного пожара. В худшем случае такой пожар может сопровождаться взрывом с образованием облака угольной пыли или сажи.

Гидроэнергетические ресурсы в развитых странах используются практически полностью: большинство речных участков, пригодных для гидротехнического строительства, уже освоены. А какой вред причиняют природе гидроэлектростанции! Выбросов в воздух от ГЭС нет никаких, но зато

вред водной среде наносит довольно большой. В первую очередь страдают рыбы, которые не могут преодолеть плотины ГЭС. На реках, где построены гидроэлектростанции, особенно если их несколько – так называемые каскады ГЭС, - резко меняется количество воды до и после плотин. На равнинных реках разливаются огромные водохранилища, и затопленные земли безвозвратно потеряны для сельского хозяйства, лесов, лугов и расселения людей. Что касается аварий на ГЭС, то в случае прорыва любой гидроэлектростанции образуется огромная волна, которая сметет все находящиеся ниже плотины ГЭС. А ведь большинство таких плотин расположено вблизи крупных городов с населением в несколько сотен тысяч жителей.

Выход из создавшегося положения виделся в развитии атомной энергетики. На конец 1989 года в мире построено и работало более 400 атомных электростанций (АЭС). Однако сегодня АЭС уже не считаются источником дешевой и экологически чистой энергией. Топливом для АЭС служит урановая руда – дорогостоящее и трудно добываемое сырье, запасы которого ограничены. К тому же строительство и эксплуатация АЭС сопряжены с большими трудностями и затратами. Лишь немногие страны сейчас продолжают строительство новых АЭС. Серьезным тормозом для дальнейшего развития атомной энергетики являются проблемы загрязнения окружающей среды. Все это дополнительно осложняет отношение к атомной энергетике. Все чаще звучат призывы, требующие отказаться от использования ядерного топлива вообще, закрыть все атомные электростанции и возвратится к производству электроэнергии на ТЭС и ГЭС, а также использовать так называемые возобновимые – малые, или «нетрадиционные», - виды получения энергии. К последним относят прежде всего установки и устройства, использующие энергию ветра, воды, солнца, геотермальную энергию, а также тепло, содержащееся в воде, воздухе и земле.


© 2024
lekarevka.ru - Медицинский портал - Lekarevka